0%

leetcode-144

144. 二叉树的前序遍历

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:

img

1
2
输入:root = [1,null,2,3]
输出:[1,2,3]

示例 2:

1
2
输入:root = []
输出:[]

示例 3:

1
2
输入:root = [1]
输出:[1]

示例 4:

img

1
2
输入:root = [1,2]
输出:[1,2]

示例 5:

img

1
2
输入:root = [1,null,2]
输出:[1,2]

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

方法一:递归

思路与算法

首先我们需要了解什么是二叉树的前序遍历:按照访问根节点——左子树——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候,我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过程天然具有递归的性质,我们可以直接用递归函数来模拟这一过程。

定义 preorder(root) 表示当前遍历到 root 节点的答案。按照定义,我们只要首先将 root 节点的值加入答案,然后递归调用 preorder(root.left) 来遍历 root 节点的左子树,最后递归调用 preorder(root.right) 来遍历 root 节点的右子树即可,递归终止的条件为碰到空节点。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ans = new ArrayList<>();
dfs(root, ans);
return ans;
}

private void dfs(TreeNode root, List<Integer> ans) {
if (root == null) {return;}
ans.add(root.val);
dfs(root.left, ans);
dfs(root.right, ans);
}
}

复杂度分析

时间复杂度:O(n),其中 nn 是二叉树的节点数。每一个节点恰好被遍历一次。

空间复杂度:O(n),为递归过程中栈的开销,平均情况下为 O(logn),最坏情况下树呈现链状,为 O(n)。

方法二:迭代

思路与算法

我们也可以用迭代的方式实现方法一的递归函数,两种方式是等价的,区别在于递归的时候隐式地维护了一个栈,而我们在迭代的时候需要显式地将这个栈模拟出来,其余的实现与细节都相同,具体可以参考下面的代码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Solution2 {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ans = new ArrayList<>();
Deque<TreeNode> stack = new LinkedList<>();
while (root != null || !stack.isEmpty()) {
while (root != null) {
ans.add(root.val);
stack.offerLast(root);
root = root.left;
}
root = stack.pollLast();
assert root != null;
root = root.right;
}
return ans;
}
}

复杂度分析

时间复杂度:O(n),其中 nn 是二叉树的节点数。每一个节点恰好被遍历一次。

空间复杂度:O(n),为迭代过程中显式栈的开销,平均情况下为 O(logn),最坏情况下树呈现链状,为 O(n)。

方法三:Morris 遍历

思路与算法

可以在线性时间内,只占用常数空间来实现前序遍历。这种方法由 J. H. Morris 在 1979 年的论文「Traversing Binary Trees Simply and Cheaply」中首次提出,因此被称为 Morris 遍历。

Morris 遍历的核心思想是利用树的大量空闲指针,实现空间开销的极限缩减。其前序遍历规则总结如下:

  1. 新建临时节点,令该节点为 root;

  2. 如果当前节点的左子节点为空,将当前节点加入答案,并遍历当前节点的右子节点;

  3. 如果当前节点的左子节点不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点:

    • 如果前驱节点的右子节点为空,将前驱节点的右子节点设置为当前节点。然后将当前节点加入答案,并将前驱节点的右子节点更新为当前节点。当前节点更新为当前节点的左子节点。
    • 如果前驱节点的右子节点为当前节点,将它的右子节点重新设为空。当前节点更新为当前节点的右子节点。
  4. 重复步骤 2 和步骤 3,直到遍历结束。

这样我们利用 Morris 遍历的方法,前序遍历该二叉树,即可实现线性时间与常数空间的遍历。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class Solution3 {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ans = new ArrayList<>();
TreeNode cur = root, p;
while (cur != null) {
if (cur.left == null) {
ans.add(cur.val);
cur = cur.right;
} else {
p = cur.left;
while (p.right != null && p.right != cur) {
p = p.right;
}
if (p.right == null) {
ans.add(cur.val);
p.right = cur;
cur = cur.left;
} else {
p.right = null;
cur = cur.right;
}
}
}
return ans;
}
}

复杂度分析

时间复杂度:O(n),其中 n 是二叉树的节点数。没有左子树的节点只被访问一次,有左子树的节点被访问两次。

空间复杂度:O(1)。只操作已经存在的指针(树的空闲指针),因此只需要常数的额外空间。